
eDirectory 11.0.00
Survival guide

1

What changed?
- Introducing Symfony 2.7 framework

- Partial directories restructure

- Language files

- Search engine

- Config files

- Composer insertion

- Templates system (themes)

- Javascript’s normalizing

2

What (Barely) DIDN’T change
- Site manager

- Sponsors

- Profile

- Database

3

Symfony 2.7
PHP MVC Framework

What is, what’s for, how it works and

why it has been chosen

4

Symfony 2.7
- Framework MVC (Model-View-Controller)

- Model :

Shapes every piece of information on the database

- View :

Organizes the way every information will be displayed

- Controller :

It is the bridge between the items above, obtaining information from the first, modeling it,

and feeding the second.

5

Model
- A PHP-class representation of something that is shaped at the database

- It is used to ease the controller’s info manipulation, as well as concentrate a big

slice of the SQL commands that were scattered across the code previously

- Doctrine is the name of Symfony’s library with that role

6

Entity example : Setting
The lines above the class definition determine the

table which the entity will represent.

Within a class, before defining each propriety, the

comment blocks (PHPDOC) defines what table

column that given propiety represents, as well as

some metadata about the propriety.

Important reminder: Every entity must be mapped

ONLY ONCE to a table. Better saying, the entity-

table bound must be 1 for 1.

7

Entities Usage
Here’s an example of how to alter

and insert new information into your

database through entities.

8

Entities Usage
Examples of how to obtain and delete information from the database

9

View
- It’s the framework’s slice responsible for creating an information displaying

template

- It’s basically the HTML master container

- The same way Doctrine handles the Model, on Symfony we use Twig to handle

the View

- Twig is an intermediate language between PHP and HTML, easy to learn and

more understandable for designers

- Twig is “Compiled” in time of execution and saved in cache. For that reason, a

longer delay at the first time the template is rendered is perfectly normal.

10

Example of a “View” on Twig

The code above creates an alert for each error message, working just like a “foreach”

11

Twig – Filters and functions
- Twig provides a massive variety of predefined filters and functions, all set and ready to go

- These functions can be found at the Twig’s documentation

- This tool also allows creating new filters and custom functions, through codes named “Twig extension”.

The eDirectory has various custom extensions, for a vast realm of purposes(example: build the path to a

certain image at the custom folder, format monetary values, add Javascript codes, etcetera)

- Twig also supports extend templates and specific blocks replacement on the page. This is used a lot on

the newest version, for every page is inherited from “base.html.twig”

12

Twig – Filters and functions example
Function’s example:

addJsFile(Custom) – Adds a JS file which will be

included at the page’s footer

Filter’s example:

trans – Translates a text’s shard

date(custom) – formats a given date

13

Twig – related assets and functions
Images, CSS files and JS are located inside the “web/assets” folder

The asset(“name”, “package”) function is used to create a path to a determinate resource. This function accepts

“package names” as second argument, which act as shortcuts to determinate paths. Here’s a list of all included

the packages included in this version of eDirectory:

profile_images : custom/profile/

assets_images : assets/images/

domain_images : custom/domain_#/image_files/

domain_content : custom/domain_#/content_files/

domain_extrafiles : custom/domain_#/extra_files/

Usage example:

To include image ‘web/assets/images/bg-image.png’ ->

14

Controller
- It’s a PHP class that responds to a determinate route

- Routes are URL standards which are defined at routing.yml file, which will be

discussed up ahead. Each URL standard points out to one Controller, which

decides what to do as soon as it receives the applications control.

Ex: www.demodirectory.com/listing will hand the execution to the listing’s

DefaultController.php, which will call the indexAction() method.

- The Controller’s role is to process the needed information to feed the View with

data that requires the Model to be displayed correctly

15

http://www.demodirectory.com/listing

Control and Action example

16

Alright, but how does it all go together?
Basically, we’ve configured a ton of routes that end up in different controllers. Each

Controller (which is a simple PHP class) decides what must happen in that page,

making every needed request and alteration on the database through Entities at the

Model and renders the proper View for that route, getting the needed info so it can

show all the content that page must have.

17

Services
- Side classes with specific functionalities.

- Used to group functions that potentially will be used over and over again in other

parts of the project.

- Accessed through the Container’s get(“name”) method.

- Just like Twig’s functions, there are native symfony services and custom

eDirectory services. Both are accessed the same way.

18

Service example
The following service is used to get

the content from the “CustomText”

table according to its ID. The

service’s name is configured at

services.yml of the specific Bundle,

as it can be seen below.

Service usage example:

19

Container
- This class is the main services and parameters manager

- Parameters are info defined at the *.yml files

- Instances the services just at the first time, turning them into a “Singleton”

application afterwards

- The Container is available in every Controllers by default, although it can be

“injected” into the services builder during its declaring at services.yml. This

concept is called “Dependency Injection”

20

Bundles
- Are “Packages” of Controllers, Entities, Twigs & Services

- Contains all the files related to a determinate functionality

- Bundles are registered directly at the Kernel :

21

Why Symfony?
- It’s one of most used frameworks on the market, known for being robust and

having a brand community and support

- Many of the other PHP frameworks have their origin at Symfony

- Its characteristics fit well with the projects must-have tools.

- Using a framework that considers the modern development models helps us in

keeping our codes quality, eases adaptation for new developers and

documentation, as well as being the first step to modern-up eDirectory

22

New directories
structure

Files organization and Symfonys

structure

How it was, how it became and why

we needed the change

23

Previous directory structure
At the previous structure, all the folders were found at the server’s

root, which we’ll call ‘public_html’ from now on.

Accessing the files before was direct, except for the front pages, which

went through the old ‘full_modrewrite.php’, which identified the

proper route and include the needed files in each section.

24

New Directory Structure
A new level before ‘public_html’ was added. This level contains all the

codes and resources like configurations and translations of the new

version

This folder that holds ‘public_html’ is safer, for its files and folders are

not accessible directly through the browser

25

/app
Folder containing the Frameworks brain. Here, the main classes and configurations can be found.

Contains:

- /app/cache

- Configuration cache and Twig from every environment

- /app/config

- Every configuration of the new version

- The main routing file (routing.yml)

- /app/logs

- Every log generated by the Framework

- /app/Resources

- All the lang files

- Theme files

- Upgrade folder, where upgrade packages can be opened and executed

- Kernel

- Console

26

/ElasticConfigs
Directory containing all the MySQL and JSON code used by ElasticSearch during

Synchronization.

Except the files located inside ElasticConfigs/Scripts, every other resource is used in the

system. In case some SQL or JSON file is altered, those changes will propagate through the

ElasticSearch and may be troublesome if not done carefully.

The SQL files content is used every time an item is saved, either at the sponsor’s area or site

manager. The query’s result has the expected data shape for the ElasticSearch index. Such

data shape is mapped in the file below:

 ElasticConfigs/RiverConfigs/JSON/IndexCreation.json

(This process has be confirmed if still updated)

27

/src/ArcaSolutions
Folder that contains every Basecode team made Bundle. Each Bundle was projected to best

bear all of a specific module’s functionalities.

In the following pages, we’ll further detail every Bundle we consider important. We’ll explain

its particularities, functionalities and how they interact with other Bundles.

Not every Bundle will be detailed, for their functionalities, in a general context, is very alike.

28

The common in every Bundle
Basically, each module’s Bundle has its specific Controllers, Entities, Services, Routes and

Twig extensions. On the following example, we have the Articles Bundle:

- Controller: Every controller is placed here. In this case, the ‘DefaultController.php’

concentrates every action in this module. In other words, every URL-accessible

code through routes defined at ‘routing.yml’ is in this class.

- Entity: Every relevant entity for the Article module, as well as some useful, non-

mapped classes

- Repository: Entity-extending classes, providing custom functions that allow

manipulating any data related to said entity.

- Resources: You’ll find routing.yml and services.yml here.

- routing.yml : Defines each and every route on this module, as well as how

and which action of which controller each route will activate.

- services.yml : Defines every service on the module, their names and what

they need to be initialized.

- Search: Search related configurations. Self-explanatory.

- Services: Folder containing every service classes.

- Twig: Directory where the Twig extensions (filters, methods) can be found.

29

/src/ArcaSolutions/CoreBundle
The Core, MultiDomain and Web Bundle are the new eDirectory foundation. They bear

support classes for other modules so they’ll work correctly, as well as tons of utility classes

like the “Utility” service, for example.

- Controller: Contains the MaintenanceController, which is called whenever the

directory goes into Maintenance mode.

- Entity: EVERY mapped entity on the Main database

- EventListener: Holds every class that reacts to various Symfony’s events

- Exception: Contains the directory’s specific exceptions

- Kernel: Bears the eDirectory’s custom Kernel, where every Bundle is registered

30

/src/ArcaSolutions/ElasticsearchBundle
This Bundle worries about MySQL’s data synchronization with ElasticSeach’s.

- Controller: Its DefaultController contains a hash encrypted route. If accessed with

the “elasticsearchRebuildLocations” flag set to 1 at the Settings table at the Domain

database, this action will rebuild the whole eDirectory locations index. This is used

when a location level is enabled/disabled

- Services: Maybe the most important resource in this Bundle is the Sync service,

located in the Synchronization.php class. That class is responsible for executing all

the ‘syncommands’ whenever an item is saved.

31

/src/ArcaSolutions/ImageBundle
Contains entities related to galleries and images. Pretty self-explanatory

Its service ImageHandler allows it to obtain the path to any image from any instance from

the Image class (do NOT confuse with class_Image.php)

This Bundle provides three Twig extensions which are extraordinary useful when

searching for images. These are:

- imagePath(Image)

- imageProfile(AccountProfileContact)

- imageProfileByAccountId(Integer)

32

/src/ArcaSolutions/MultiDomainBundle
The MultiDomain Bundle is responsible for individual information maintenance in each

domain, as well as intercept the Framework’s initializing to inject the database information

linked to said domain inside Doctrine.

It’s Settings (“multi_domain.information”) service is the class to be used whenever you

need to obtain specific information about the active domain, like for example the Domains

ID, the path to its custom folder, its name, theme, database’s name (Both MySQL and

ElasticSearch)

33

/src/ArcaSolutions/ReportsBundle
This Bundle handles the reports created by the eDirectory newest version. That is done

through its ReportHandler(“reporthandler”) service.

Besides, this Bundle holds all the entities that are somehow related to Reports(Hidden in

the image for being too many)

34

/src/ArcaSolutions/SearchBundle
The Search Bundle is responsible for every search related operation on eDirectory newest version. It

was designed to be as modular and adaptive as possible.

- Controller: Its DefaultController contains the standard search actions, including the main

search (searchAction).

- Entity:

- Filters: Holds the classes that manage every search filters functionality

- Sorters: Contains class that manage all the search orderers.

- Summary: Bears the SummaryTitle class, responsible for building a “humanly readable”

phrase which represents the content that is being searched.

- Events: Contains a container-like class for the search engine, which will be explained further

ahead.

- Services:

- ParameterHandler : Class responsible for obtaining information for the search from the

URL

- SearchEngine: Every search’s heart. This class coordinates every search procedure,

including the Elasticsearch queries

35

/src/ArcaSolutions/UpgradeBundle
Responsible for locating and executing the upgrade patches. This Bundle is composed by a

console command (php app/console edirectory:upgrade), the Upgrade(‘upgrade’) service and the

abstract class BaseUpgrade.

The command basically calls the service and provides the output(normally at the terminal)

The service researches the upgrade/ directory, searching for folders that contain SQL queries,

which will be executed, and .php files that contain class that inherit the BaseUpgrade class. Those

will be instantiated and have their Execute() method called

The BaseUpgrade class has methods which are useful for the upgrade process, like for example the

elasticsearch rebuild and error log functions

36

/src/ArcaSolutions/WebBundle
It handles a ton of functionalities, including the controller which manages the homepage, a big

slice of the Twig extensions and content management services, like LeadHandler,

TimelineHandler & CustomTextHandler.

This Bundle also contains the mapping of all the entities in the Domain database which don’t fit

in no other Bundle (e.g.: Setting, FAQ, Review)

Among its multiple controllers, we have those which control the functionality of many sections,

such as ContactUs, CustomPages, Enquire, Reviews & SendMail, as well as the main index, of

course!

37

/vendor
This folder holds every default Bundle, which was not developed by our basecode

team.

It is law; Thou shall never alter any code in this folder

38

/web
Dèja vu? Got the feeling you’ve encountered this folder before?

The web folder is the old ‘public_html’, which contains the old eDirectory structure. The Site

Manager, Profile and Sponsors area are still at the old coding structure, and despite our plans

of altering and leaving eDirectory entirely on Symfony’s structure, that process will take long

to be completed.

In other words, for this release only the Front was rebuild from the ground up. That doesn’t

mean that there were no changes in other parts of the code : A lot of stuff was removed

and/or redone.

In this directory we also have the Assets folder, which contain all the CSS, JS and image files.

39

Language and
Translation

XLIFF files

What, porquoi, & como?

40

Translation and language
Previously, every language was defined in a .php file (e.g.web/lang/en_us.php), which

used constants to keep messages.

In this newer version, all those messages were moved to XLIFF files (.xliff or .xlf)

which are located at app/Resources/translations. These files are basically XMLs which

contain a node for each translation. Each node has embedded the original text and its

translation, respectively at “source” and “target”.

41

Alright, but how does it work?
Instead of calling a constant all the time, in the newest eDirectory there are two ways

of translating a text, depending of the context

- At Twig :

- Inside a Controller (Using the “translator” service):

42

Translation domains
Another new feature is the translation domain.

Instead of grouping all the messages in a single file, in this version some translation

were divided in various domains.

In sum, a “domain” is pretty much a neat name for “different file”. Lang used on the

URLs and sorters names at results, for example, are allocated at filters.en.xliff. The

default format uses the following rule:

domain.langinitials.xliff

43

Important notes
- Langs are compiled and cache is created out of them

(app/cache/env/domain/translations). Sometimes this cache must be recreated so

lang changes are effective. This can be done by deleting the cache folder of that

domain or using the cache cleaning command (php app/console cache:clear --no-

warmup)

- The file which concentrates the biggest slice of languages is messages.linguage.xliff

- There are tools to ease the translating process, but those are available in

development environment only.

44

Themes
Reborn

Where have they gone and how they

work?

45

Themes
In the newest version, we sought a way to leave

themes as less dependent from codes as possible and

give wider freedom for designers to modify them and

create their own without having to understand

complex PHP codes.

The solution was to move everything layout related

to a single place and ease that package’s replication.

That’s exactly what we did!

Now all the themes are located at

app/Resources/themes/.

46

Setup
The configuration of which theme is active

is divided in two files:

Which theme is active: domain.yml :

Which themes are available: config.yml :

47

